

Tetrahedron Letters 44 (2003) 6117-6120

Some triplet energy-transfer reactions initiated by photoexcitation of triplet excited state of dibenz[a,h]anthracene to the higher triplet excited states

Xichen Cai, Michihiro Hara, Kiyohiko Kawai, Sachiko Tojo, Mamoru Fujitsuka and Tetsuro Majima*

The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan

Received 9 April 2003; revised 9 June 2003; accepted 9 June 2003

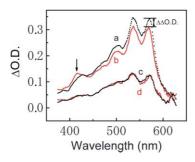
Abstract—Some triplet energy-transfer reactions initiated by photoexcitation of the triplet excited state of dibenz[a,h]anthracene to higher triplet excited states (DBA(T_n)) were observed in the presence of the triplet energy quenchers (Q) such as naphthalene, biphenyl, p-dichlorobenzene, and o-dicyanobenzene. In the case of carbon tetrachloride (CCl₄) as Q, DBA(T_n)-sensitized decomposition of CCl₄ occurred.

© 2003 Elsevier Ltd. All rights reserved.

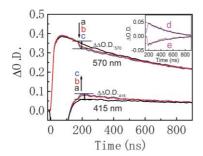
Polycyclic aromatic hydrocarbons (PAH) such as naphanthracene, dibenz[a,h]anthracene (Np),(DBA), and chrysene have attracted much attention from the chemical and biological aspects. Reactions of PAH in the singlet (S_1) and lowest triplet (T_1) excited states have been extensively studied.^{2,3} Similarly, reactions involving PAH in the higher excited states such as anthracene and its substituted compounds in the T2 state have been investigated.⁴⁻⁷ However, work on the reactions involving PAH in the higher triplet excited states $(T_n, n \ge 2)$ is still limited.⁸⁻¹⁰ Recently, we found the triplet energy transfer occurs from chrysene (T_n) and Np (T_n) to quenchers (Q) such as biphenyl (Bp), p-dichlorobenzene (DCB), and odicyanobenzene (DCNB), and that the decomposition of carbon tetrachloride (CCl₄) is sensitized by chrysene(T_n) and Np(T_n). 11,12 According to the electron transfer theories, the electron transfer quenching of $chrysene(T_n)$ or $Np(T_n)$ by Q should occur competitively with the triplet energy transfer quenching. However, the electron transfer did not occur between them. It is necessary to study the properties of $PAH(T_n)$ for a variety of PAH.

PAH, having absorption at around 355 nm, high yield of intersystem crossing to give PAH(T_1), and PAH(T_1) with a long lifetime, and intense absorption at 532 nm, can be a candidate for study under our experimental conditions using the 355 nm first laser and 532 nm second laser. DBA was used as a PAH in this study because of its properties (S_0 state absorption peak, 395 nm; ISC yield, 0.9; T_1 state absorption peak, 580 nm). We found the triplet energy transfer quenching of DBA(T_n) by Q such as Np, Bp, DCB, DCNB, and CCl₄, and DBA(T_n)-sensitized decomposition of CCl₄.

DBA(T_1), generated from irradiation of DBA (3.6×10⁻⁴ M) with the first 355 nm Nd:YAG laser (5 mJ pulse⁻¹) in Ar-saturated acetonitrile solution, showed absorption peaks in the range of 400–600 nm (Fig. 1(a)), similarly to those reported.^{2,3} The second 532 nm Nd:YAG laser (50 mJ pulse⁻¹) was irradiated to the sample at the delay time of 160 ns after the first 355 nm laser excitation, giving DBA(T_n). However, no change in the transient absorption of DBA(T_1) was observed. It is suggested that the internal conversion $T_n \rightarrow T_1$ was fast and accomplished within the laser flash duration of 5 ns. It is also found that no photoionization occurred during the 355 and 532 nm two-laser irradiation of DBA.


On the other hand, bleaching ($\Delta\Delta$ O.D.₅₇₀) and recovery of the transient absorption of DBA(T_1) at 570 nm and formation of a new absorption peak at 415 nm were

Keywords: dibenz[*a,h*]anthracene (DBA); higher triplet excited states; triplet energy transfer; sensitized reactions; decomposition of carbon tetrachloride.


^{*} Corresponding author. Tel.: (+81)6-6879-8495; fax: (+81)6-6879-8499; e-mail: majima@sanken.osaka-u.ac.jp

observed in the presence of Np, which increased with increasing the concentration of Np (0.3 < [Np] < 1.0 M). The spectral changes and time profiles of the transient absorption of Np(T₁) at 415 nm^{2,3} and DBA(T₁) at 570 nm are shown in Figures 1 and 2.

The experimental results show that a reaction of DBA(T_n) and Np occurred. Neither a radical cation nor a radical anion of Np and DBA was observed, suggesting no occurrence of the electron transfer. The transient absorptions of Np*+, Np*-, DBA*+, and DBA*- are well known to have the corresponding peaks at 690, 755, 753, and 790 nm, respectively, 13 and are easily detected. When Np (E_{T1} : 253 kJ mol $^{-1}$) was

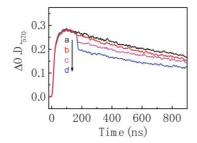
Figure 1. Transient absorption spectra observed at 30 ns after the second 532 nm laser irradiation during two-laser two-step flash photolysis of DBA in the absence (a) and presence of Np (0.9 M) (b) in Ar-saturated acetonitrile solution. (c) and (d) were observed at 2.5 μ s after the 532 nm laser irradiation of (a) and (b), respectively.

Figure 2. Time profiles of the transient absorption at 570 and 415 nm assigned to DBA(T_1) and Np(T_1), respectively, during two-laser two-step flash photolysis of DBA in the absence (a) and presence of Np at 0.7 (b) and 0.9 (c) M in Ar-saturated acetonitrile solution. Inset shows the amplification of the growth and decay of Np(T_1) at 415 nm (d) together with the bleaching and recovery of DBA(T_1) at 570 nm (e) which were obtained by subtraction of (a) from (c). The trace lines were obtained from calculation according to the first-order rate equation. The initial growth of the transient absorption of DBA(T_1) at 570 nm in the time scale of few tens ns corresponds to the intersystem crossing from DBA(T_1). The large minus signal of T_1 0. The large minus signal of T_2 0. The trace lines were obtained from the intersystem crossing from DBA(T_1 1) at 570 nm in the time scale of few tens ns corresponds to the intersystem crossing from DBA(T_1 1). The large minus signal of T_1 2. The large minus signal of T_1 3 nm in the range of 100 ns is due to fluorescence of DBA(T_1 2) with 30 ns lifetime.

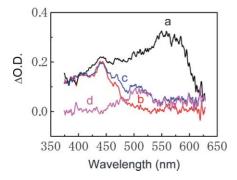
replaced by Bp (E_{T1} : 274 kJ mol⁻¹), DCB (E_{T1} : 335 kJ mol⁻¹), or DCNB (E_{T1} : ~295kJ mol⁻¹) with the T₁ state energy (E_{T1}) higher than that of DBA(T₁) (E_{T1} : 218 kJ mol⁻¹)³ but lower than that of DBA(T_n) (E_{T} of DBA(T_n) was estimated to be 443 kJ mol⁻¹ from E_{T1} of DBA(T₁) and 532 nm photon energy), $\Delta\Delta$ O.D.₅₇₀ and the recovery of the transient absorption of DBA(T₁) was observed similarly to the case of Np.

The free energy change in the energy transfer between DBA(T_n) and DCNB, $\Delta G_{\rm en} = -E_{\rm Tn}({\rm DBA}) + E_{\rm Tl}({\rm DCNB})$, was calculated to be -138 kJ mol⁻¹. For the electron transfer between DBA(T_n) and DCNB, $\Delta G_{\rm el} = 96.488 \times$ $[E_{1/2}^{\text{ox}}(\text{DBA}) - E_{1/2}^{\text{red}}(\text{DCNB})] - E_{\text{T}}$ (DBA) was calculated to be -124 kJ mol^{-1} , where $E_{1/2}^{\text{ol}}(\text{DBA})$ is the oxidation potential (+1.19 V) in acetonitrile versus standard calomel electrodes (SCE), and $E_{1/2}^{\text{red}}(\text{DCNB})$ is the reduction potential (-2.12 V) in N,N-dimethylformamide (DMF) versus Ag/AgClO₄, the difference in the potentials between versus Ag/AgClO₄ and versus SCE is ± 0.3 V.³ According to the electron transfer theories, 3,14,15 the energy and electron transfer rate constants ($k_{\rm en}$ and $k_{\rm el}$) were calculated from $\Delta G_{\rm en}$ and $\Delta G_{\rm el}$, to be $k_{\rm en} = k_{\rm el} = 6.6 \times 10^{10}$ M⁻¹ s⁻¹. ¹⁶ Therefore, it is suggested that the energy and electron transfer reactions from DBA(T_n) to DCNB should occur competitively. However, the experimental results show that only triplet energy transfer occurred from DBA(T_n) to DCNB and other Qs (Eq. (1)).

$$DBA(T_n)+Q(S_0)\rightarrow DBA(T_1)+Q(T_1)$$
 (1)


It is suggested that $\Delta G_{\rm el}$ are too negative to cause the electron transfer in the inverted region. ^{14,15} It is also suggested that, because of the different properties of DBA(T_n) from those of DBA(T₁), the reactions of DBA(T_n) with Q can not be explained using the electron transfer theories for molecules in the S₁ or T₁ states. ^{14,15}

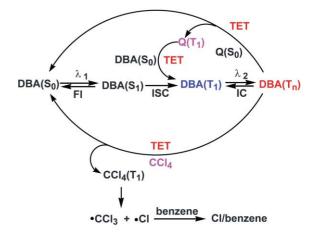
Since E_{T_1} of Q is higher than that of DBA(T₁), the second triplet energy transfer occurred from Q(T₁) to DBA(S₀) (Eq. (2)).


$$Q(T_1) + DBA(S_0) \rightarrow DBA(T_1) + Q(S_0)$$
 (2)

The decay of Np(T₁) and growth of DBA(T₁) after the 532 nm second laser excitation occurred in the same time scale as shown in Figure 2 inset. Since [Np(T₁)]= 1.0×10^{-6} M estimated from $\Delta\Delta$ O.D.₅₇₀ and $\Delta\Delta$ O.D.₄₁₅ was much lower than [DBA], both of the decay and growth were fitted to the first-order rate equation. The rate constants of both the growth ($k_{\rm g}$) and the decay ($k_{\rm d}$) were calculated to be 2.0×10^{10} M⁻¹ s⁻¹, which is equivalent to the diffusion-controlled rate constant ($k_{\rm diff}=1.9\times10^{10}$ M⁻¹ s⁻¹).³

However, when Np was replaced with CCl₄ (0.01< [CCl₄]<0.2 M), entirely different experimental results were observed. $\Delta\Delta$ O.D.₅₇₀ was similarly observed and increased with increasing [CCl₄], while no recovery of the transient absorption of DBA(T₁) at 570 nm was observed (Fig. 3).

Figure 3. Time profiles of the transient absorption of DBA(T_1) at 570 nm during two-laser two-step flash photolysis of DBA in the absence (a) and presence of CCl₄ with 0.01 (b), 0.08 (c), and 0.15 (d) M, in Ar-saturated acetonitrile solution. The growth of the transient absorption of DBA(T_1) in the time scale of few tens ns was due to the formation of DBA(T_1) through intersystem crossing from DBA(T_1).


Figure 4. Transient absorption spectra observed at 360 ns after 355-nm laser without 532-nm laser irradiation (a) and with 532-nm laser irradiation during two-laser two-step flash photolysis of DBA (3.6×10⁻⁴ M) in the absence (b) and presence (c) of benzene 0.85 M, in Ar-saturated CCl₄ solution at room temperature. The delay time of the second 532-nm laser was 160 ns after the first 355-nm laser. The broad absorption with a peak at 510 nm obtained by subtraction of spectra (b) from (c) is assigned to Cl/benzene complex (d).

When CCl_4 was replaced by CH_2Cl_2 or 1,2-dichloroethane, no $\Delta\Delta O.D._{570}$ was observed. If electron transfer would occur from $DBA(T_n)$ to CH_2Cl_2 or 1,2-dichloroethane as a good electron acceptor, 17,18 $\Delta\Delta O.D._{570}$ could be observed similarly to the case of CCl_4 . The experimental results suggest the occurrence of the triplet energy transfer from $DBA(T_n)$ to CCl_4 and $DBA(T_n)$ -sensitized decomposition of CCl_4 giving a trichloromethyl radical ($^{\bullet}CCl_3$) and a chlorine atom ($^{\bullet}Cl$) (Eq. (3)). 19

$$DBA(T_n)+CCl_4 \rightarrow DBA(S_0)+{}^{\bullet}Cl+{}^{\bullet}CCl_3$$
 (3)

The formation of *Cl was confirmed by observation of the Cl/benzene complex with a broad absorption around 510 nm during two-laser, two-step flash photolysis of DBA in CCl₄ in the presence of benzene (Fig. 4).^{20,21}

Consequently, the reaction mechanism involving $DBA(T_n)$ and Q was shown in Scheme 1.

 λ_1 : 355-nm laser FI : Fluorescence λ_2 : 532-nm laser IC : Internal conversion TET : Triplet energy transfer

Scheme 1. Reaction mechanism involving $DBA(T_1)$, $DBA(T_n)$, and Q.

Other PAH(T_n) such as benz[a]anthracene(T_n) and benzo[e]pyrene(T_n) also sensitized the decomposition of CCl₄ to give ${}^{\bullet}$ CCl₃ and ${}^{\bullet}$ Cl. It is considered that the triplet energy transfer from PAH(T_n) to Q and PAH(T_n)-sensitized decomposition of CCl₄ are common properties of PAH(T_n) such as DBA(T_n), Np(T_n), chrysene(T_n), benz[a]anthracene(T_n), and benzo[e]pyrene(T_n) with various structures.

In summary, some triplet energy-transfer reactions initiated by photoexcitation of DBA(T_1) to DBA(T_n) were observed in the presence of Q such as Np, Bp, DCB, and DCNB to give Q(T_1). No electron transfer occurred between DBA(T_n) and Q, which suggested that the properties of DBA(T_n) are different from those of DBA(T_n)-sensitized decomposition of CCl₄ occurred to give ${}^{\bullet}$ CCl₃ and ${}^{\bullet}$ Cl radicals with high reactivity. These reactions can not be initiated by DBA(T_n) or DBA(T_n) states. In other words, they can be initiated only by the two-laser excitation method. The T_n -state chemistry will become clear with further theoretical and experimental investigation.

Acknowledgements

This work has been partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sport and Culture of Japan.

References

Hecht, S. S.; Kenney, P. M. J.; Wang, M. Y.; Upadhyaya, P. Cancer Lett. 2002, 187, 87–94.

- Carmichael, I.; Hug, G. L. J. Phys. Chem. Ref. Data 1986, 15, 1–250.
- 3. Murov, S. L.; Carmichael, I.; Hug, G. L. *Handbook of Photochemistry*; Marcel Dekker: New York, 1993.
- Liu, R. S. H.; Edman, J. R. J. Am. Chem. Soc. 1968, 90, 213–215.
- Kobayashi, S.; Kikuchi, K.; Kokubun, H. Chem. Phys. 1978, 27, 399–407.
- Bohne, C.; Kennedy, S. R.; Boch, R.; Negri, F.; Orlandi, G.; Siebrand, W.; Scaiano, J. C. J. Phys. Chem.-Us 1991, 95, 10300–10306.
- McGimpsey, W. G.; Evans, C.; Bohne, C.; Kennedy, S. R.; Scaiano, J. C. Chem. Phys. Lett. 1989, 161, 342–346.
- 8. Koshihara, S.; Kobayashi, T. J. Chem. Phys. 1986, 85, 1211–1219.
- McGimpsey, W. G.; Scaiano, J. C. J. Am. Chem. Soc. 1988, 110, 2299–2301.
- Turro, N. J. Modern Molecular Photochemistry; The Benjamin/Cummings Publishing Company: Menlo Park, CA, 1978.
- Cai, X.; Hara, M.; Kawai, K.; Tojo, S.; Majima, T. Chem. Phys. Lett. 2002, 368, 365–369.
- Cai, X.; Hara, M.; Kawai, K.; Tojo, S.; Majima, T. Chem. Commun. 2003, 222–223.
- 13. Shida, T. *Electronic Absorption Spectra of Radical Ions*; Elsevier Science: Tokyo, 1988.

- Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401–449.
- 15. Kavarnos, G. J. Fundamentals of Photoinduced Electron Transfer; VCH Publishers: New London, 1993.
- 16. The rate constants of energy and electron transfer (k) can be written according to transition state theory as following equation: $k = k_0 \exp(-\Delta G^0/RT)$, where k_0 is the reciprocal of the dielectric relaxation time. The lifetime of DBA(T_n) was calculated to be 16 ps and will be discussed in detail elsewhere. ΔG^0 is the free energy of activation, R is molar gas constant, T is temperature in Kelvin. According to Rehm and Weller equation, $\Delta G^0 = [(\Delta G/2)^2 + (\Delta G^0(0))^2]^{1/2} + \Delta G/2$, where $\Delta G^0(0)$ is the free energy of when the free energy change, ΔG , for the overall quenching process is zero. Therefore, the energy and electron transfer rate constants $(k_{\rm en}$ and $k_{\rm el})$ were calculated from $\Delta G_{\rm en}$ and $\Delta G_{\rm el}$, respectively.
- Scaiano, J. C.; McGimpsey, W. G.; Casal, H. L. J. Am. Chem. Soc. 1985, 107, 7204–7206.
- Ishida, A.; Fukui, M.; Ogawa, H.; Tojo, S.; Majima, T.; Takamuku, S. J. Phys. Chem.-Us 1995, 99, 10808–10814.
- Gannon, T.; McGimpsey, W. G. J. Org. Chem. 1993, 58, 5639–5642.
- Gannon, T.; McGimpsey, W. G. J. Org. Chem. 1993, 58, 913–916.
- 21. Ichinose, N.; Majima, T. Chem. Phys. Lett. 2000, 322, 15–20.